首页> 外文OA文献 >Efficient D-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems
【2h】

Efficient D-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems

机译:无限维实验的高效D-优化设计   贝叶斯线性逆问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a computational framework for D-optimal experimental design forPDE-based Bayesian linear inverse problems with infinite-dimensionalparameters. We follow a formulation of the experimental design problem thatremains valid in the infinite-dimensional limit. The optimal design is obtainedby solving an optimization problem that involves repeated evaluation of thelog-determinant of high-dimensional operators along with their derivatives.Forming and manipulating these operators is computationally prohibitive forlarge-scale problems. Our methods exploit the low-rank structure in the inverseproblem in three different ways, yielding efficient algorithms. Our mainapproach is to use randomized estimators for computing the D-optimal criterion,its derivative, as well as the Kullback--Leibler divergence from posterior toprior. Two other alternatives are proposed based on a low-rank approximation ofthe prior-preconditioned data misfit Hessian, and a fixed low-rankapproximation of the prior-preconditioned forward operator. Detailed erroranalysis is provided for each of the methods, and their effectiveness isdemonstrated on a model sensor placement problem for initial statereconstruction in a time-dependent advection-diffusion equation in two spacedimensions.
机译:我们为具有无限维参数的基于PDE的贝叶斯线性逆问题开发了D最优实验设计的计算框架。我们遵循在无限维范围内仍然有效的实验设计问题的公式。通过解决涉及对高维算子及其派生词的对数行列式进行重复评估的优化问题来获得最佳设计。对于大型问题,形成和操纵这些算子是计算上的问题。我们的方法以三种不同的方式利用逆问题中的低秩结构,从而产生有效的算法。我们的主要方法是使用随机估计量来计算D最优准则,其导数以及从后到先的Kullback-Leibler散度。根据先决条件数据不匹配Hessian的低秩逼近和先决条件前向算子的固定低秩逼近,提出了两个其他选择。为每种方法提供了详细的误差分析,并在两个空间维度上的时间依赖性对流扩散方程中,针对初始状态重构的模型传感器放置问题论证了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号